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The solid-state structure of the (tetrahydroxy)oligo-
siloxane [(tBuO)3SiOSi(OH)2]2O, synthesized by the hydrol-
ysis of (tBuO)3SiOSiCl3, reveals molecules composed of
four vertex-linked SiO4 tetrahedra and containing four
SiOH groups involved in both intermolecular and
intramolecular hydrogen-bonding.

Silanol compounds serve as interesting models for the surface
hydroxyl groups of silica, and are useful in the synthesis of
metal siloxy derivatives containing Si–O–M linkages.1–4 How-
ever, as the number of hydroxyl functionalities per silicon atom
increases, these compounds become more unstable toward
condensation reactions, hampering the application of silane-
diols (R2Si(OH)2) and silanetriols (RSi(OH)3) in molecular
chemistry. Silanetriols are particularly susceptible to poly-
condensation in solution to afford closo-silsesquioxane species
such as R8Si8O12.

5 The judicious choice of R groups, and modi-
fications of synthetic procedures, allow isolation of the
incompletely condensed silsesquioxanes R7Si7O9(OH)3,

6 which
have been used as ligands in main-group and transition-metal
complexes.2 In addition, sterically demanding groups on silicon
have allowed isolation of a number of silanediols, silanetriols
and disiloxanediols.1–4 Cyclic structures containing multiple
Si–OH functionalities include compounds of the type [ArN-
(SiMe3)Si(OH)O]3

7 and cis-cis-cis-[(C6H5)4Si4O4(OH)4].
8

We are interested in the design and synthesis of oxygen-rich
metallasiloxane derivatives that undergo facile, low temperature
pyrolyses to homogeneous (atomically well-mixed) metal–silica
materials, and have previously shown that tris(tert-butoxy)-
silanol, HOSi(OtBu)3

9 (1), and bis(tert-butoxy)silanediol,
(HO)2Si(OtBu)2

10 (2), are excellent starting materials for the
preparation of suitable metal siloxide precursors.11 Further-
more, the oxygen environment of the silicon atoms in these
molecular species makes them interesting soluble models for
heterogeneous, silica-supported catalysts.11j,k In this communi-
cation we describe efforts to synthesize a novel hydroxy-
substituted siloxane for use in the synthesis of precursors to
silica-based materials. Initial efforts began with attempts to syn-
thesize the reported silanetriol (tBuO)3SiOSi(OH)3 (3),9 which
instead resulted in isolation of the (tetrahydroxy)oligosiloxane
[(tBuO)3SiOSi(OH)2]2O (4). This unusual siloxane is of interest
as a model for reactive intermediates in the hydrolytic conden-
sation of tetra(alkoxy)silanes Si(OR)4 to silica gel.12

Attempts to reproduce the literature synthesis of 3 afforded a
white crystalline product which exhibits spectroscopic (IR and
1H, 13C NMR) and physical (appearance, melting point) char-
acteristics which are very similar to those originally reported.9,†
To unambiguously determine the structure of the product a
single crystal X-ray study was performed, and this revealed the
true identity of the product as [(tBuO)3SiOSi(OH)2]2O (4).13

Presumably, 4 forms via condensation of the intermediate
silanetriol 3 (eqn. (1)).

The infrared spectra of 1, 2 and 4 (KBr pellet) contain
Si–OH vibrations in the range 3200–3500 cm�1, indicating the
presence of hydrogen bonding within the molecules.1 These

values are shifted from those for silanol functionalities of
dehydrated silica, which exhibit bands at ca. 3750 ± 10 cm�1

(νOH) and 770–840 cm�1 (δOH).14 The broad nature of the ν(OH)
band in 3 results from the presence of a number of hydrogen-
bonding interactions, as revealed in the solid state structure
(vide infra). The presence of a Si–O–Si group in 4 results in a
Si–O vibration at 1138 cm�1. The 29Si NMR spectrum of 4
(CDCl3) contains a sharp peak at δ �90.3 for the Si(OtBu)3

group, and a broad peak at δ �103.2 for the Si(OH)2 silicon
atoms.

The molecular structure of 4‡ contains two intramolecular
hydrogen bonds (H(55) � � � O(11) = 2.35(3) Å; H(57) � � � O(1) =
2.02(3) Å) which appear to distort the silicon–oxygen backbone
of the molecule into a parabolic shape (Fig. 1). As a con-
sequence, the central Si(2)–O(7)–Si(3) angle of 137.7(1)� is
much smaller than the Si(1)–O(4)–Si(2) and Si(3)–O(10)–Si(4)
angles of 165.7(2) and 163.6(2)�, respectively. A similar bending
in [Os(CO)Cl(PPh3)2Si(OH)2]2O arises from an intramolecular
interaction between one SiOH group and a chloride ligand.15

The compound [ArN(SiMe3)Si(OH)2]2O also adopts a bent
structure, which apparently results from association of the
molecules in the solid state to form a trimeric cage.7 The lack
of intramolecular interactions in [tBuSi(OH)2]2O

16 and [ArN-
(SiMe3)SiCl2]2O (Ar = 2,6-iPrC6H3)

7 results in linear Si–O–Si

Fig. 1 Structure of 4: hydrogen atoms of the tBu groups are omitted
for clarity; dashed lines represent hydrogen bonds. Selected distances
(Å) and angles (�): O(1) � � � H(57) = 2.02(3), O(11) � � � H(55) = 2.35(3);
Si(2)–O(7)–Si(3) = 137.7(1), Si(1)–O(4)–Si(2) = 165.7(2), Si(3)–O(10)–
Si(4) = 163.6(2).
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linkages. Also present within the structure of 4 are two sets of
intermolecular hydrogen bonds which link the molecules
together to form 8- and 12-membered rings, each of which
includes an inversion center (Fig. 2). The O(9)–H(58) � � � O(8)
hydrogen bond (2.12(3) Å) supports the 8-membered ring,
whereas the O(6)–H(56) � � � O(9) interaction (1.93(3) Å) is
part of the 12-membered ring. Together, these intermolecular
hydrogen bonds link the molecules into a chain structure which
repeats along the a-direction. Multiple intermolecular hydrogen
bonds are also present in [tBuSi(OH)2]2O, resulting in assembly
of the molecules into a sheet-like structure in the solid state.16

Compound 4 is relatively stable towards further conden-
sation in the solid state and in solution, but exposure to air for
extended periods results in an insoluble material. The thermo-
gravimetric analysis of 4 (heating rate 2 �C min�1 to 600 �C,
10 �C min�1 to 1100 �C, oxygen flow) revealed a 50% weight loss
between 60 and 140 �C. Further heating resulted in an addi-
tional sharp weight loss to 26.9 wt% (between 240 and 290 �C),
corresponding to the theoretical yield for 3 SiO2 (27.0 wt%).
These data indicate that 4 may serve as a useful precursor for
silica at relatively low temperatures. In contrast, 1 sublimes
under similar conditions, so that its use in pyrolytic trans-
formations to silica-based materials is somewhat limited. Pre-
liminary reactivity studies with 4 have shown that the siloxide
backbone is cleaved by nBuLi, with formation of LiOSi(OtBu)3

as the only isolated product.
In conclusion, the compound previously reported as

(tBuO)3SiOSi(OH)3
9 has been reformulated as the condensation

product [(tBuO)3SiOSi(OH)2]2O. Further studies will focus on
the synthesis of transition metal derivatives of this species.
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Notes and references
† Selected characterization data for 4: mp 114–118 �C (lit. value for 3:9

114–117 �C). 1H NMR (CDCl3) δ 3.83 (br, OH), 1.33 (OtBu); 13C NMR
(CDCl3) δ 73.10 (CMe3), 31.53 (CMe3); 

29Si NMR (CDCl3) δ �90.3
(Si(OtBu)3), �103.2 (Si(OH)2). IR (solid, KBr, cm�1) 3438, 3302

Fig. 2 Representation of the intermolecular hydrogen-bonding inter-
actions in 4, which give rise to the 8- and 12-membered rings shown in
bold.

(ν(Si–OH), H-bonded), 2977, 2936, 2911, 2874, 1391, 1368, 1245, 1190,
1138, 1066, 998, 876, 829, 700, 507, 484, 436. Anal. Calc. for
C24H58O13Si4: C, 43.21; H, 8.76. Found C, 43.02; H, 8.59%.
‡ Crystal data: C24H58O13Si4, M = 667.07, colorless crystals, space
group P1̄, triclinic, a = 9.4952(6), b = 14.1078(8), c = 15.3210(9) Å,
α = 112.688(1), β = 93.374(1), γ = 90.217(1)�, U = 1889.5(2) Å3, Z = 2,
Dc = 1.176 g cm�3, Mo-Kα radiation, λ = 0.71069 Å, µ = 0.209 mm�1,
T = 156 ± 1 K, R = 0.049, Rw = 0.058 for 4741 observed reflections
(I > 3.00σ(I)). CCDC reference number 186/1828. See http://
www.rsc.org/suppdata/dt/b0/b000322k/ for crystallographic files in .cif
format.
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